Soil Moisture Water Budget: Progress Report

Stephen Hundt

Reminder

We are making a groundwater flow model

Not all fluxes are measured directly

Aquifer System

Reminder

Look at components of hydrologic cycle

Back out GW fluxes with:

In – Out = ±ΔStorage

science for a changing world

Urban

Soil Moisture Budget

ln – Out = ±ΔStorage

precipitation surface water deliveries **groundwater deliveries** groundwater uptake

evaporation (irrigation and bare soil) transpiration runoff

Δ soil moisture

deep percolation to groundwater

Agricultural Soil

(modified from Faunt, 2009)

Importance

Scenarios of land use changes

Will largely affect aquifer predictions by changing location, timing, and volume of water infiltrating into soil

Importance

Greater Potential ET with warming climate

Pan, S., Tian, H., Dangal, S. R., Yang, Q., Yang, J., Lu, C., Tao, B., Ren, W. and Ouyang, Z. (2015), Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO₂ in the 21st century. Earth's Future, 3: 15-35. doi:

Importance

Recharge from precipitation and applied irrigation are significant portion of total inflows

Pumping is a large outflow

Outflows (Urban, 2004)

Soil Moisture Budget

In

Out = ±∆Storage

precipitation surface water deliveries **groundwater deliveries** groundwater uptake

evaporation (irrigation and bare soil) transpiration runoff

 Δ soil moisture

deep percolation to groundwater

Agricultural Soil

(modified from Faunt, 2009)

Soil Moisture / Irrigation System Budget

IrrigationDistrict

Irrigation District

Field

Irrigation District

• Field

Grid Cell

Irrigation District

SW distribution: canal losses field deliveries

- Field
 Soil Moisture:
 recharge
 pumping
- Grid Cell

Aggregated field: recharge pumping Distributed canal losses

To grid cells

Irrigated Lands + METRIC

March 2015

Irrigated Semi-irrigated

(preliminary)

ET Processing April 2015 Irrigated Semi-irrigated (preliminary) science for a changing world

ET Processing May 2015 Irrigated Semi-irrigated (preliminary)

science for a changing world

ET Processing June 2015 Irrigated Semi-irrigated (preliminary)

science for a changing world

ET Processing July 2015 Irrigated

Semi-irrigated

(preliminary)

ET Processing August 2015 Irrigated Semi-irrigated (preliminary)

science for a changing world

ET Processing September 2015 Irrigated Semi-irrigated (preliminary) science for a changing world

October 2015

Irrigated Semi-irrigated

(preliminary)

Elevated ET beyond edge of irrigated areas

Elevated ET beyond edge of irrigated areas

Elevated ET beyond edge of irrigated areas

Processing Progress: PPT

29

Soil Moisture Budget

precipitation

±ΔStorage Δ soil moisture

surface water deliveries groundwater deliveries runoff groundwater uptake

evaporation (irrigation and bare soil) transpiration

deep percolation to groundwater

Agricultural Soil

(modified from Faunt, 2009)

Potential Assumptions

Considerations:

- Model accuracy
- Level of effort
- Parameterization
 / what is sensitive
 in scenarios

Soil moisture state

- · Calculate changes in soil moisture state
- No storage in soil

Percolation

- Soil percolation rate x moisture state
- PPT ET in non-irrigation season
- · % of deliveries in irrigation season

Canal loss volume

- Fixed
- Adjustable parameter to calibrate

Canal loss distribution

- Proportional to area in district
- Concentrate at larger canals within district

Surface water deliveries

- Distribute by field area
- Distribute by net demand (ET ppt ±Δ soil moisture)
- · Distribute to fields without GW right, then remaining to those with GW

Layer of pumping

- · Relate wells to fields; include individual wells by needed supplemental water on field
- · Get general pumping depths for cells or regions & distribute pumping accordingly

Pumping volume and location

Residual of water budget (demand – supply)

Thanks for listening!

